If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=11Y^2-396
We move all terms to the left:
-(11Y^2-396)=0
We get rid of parentheses
-11Y^2+396=0
a = -11; b = 0; c = +396;
Δ = b2-4ac
Δ = 02-4·(-11)·396
Δ = 17424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{17424}=132$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-132}{2*-11}=\frac{-132}{-22} =+6 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+132}{2*-11}=\frac{132}{-22} =-6 $
| 19+2x-18=x+13 | | O.25+15=0.06x+20 | | 13-w=42 | | 3(x-2)^2+81=0 | | 4x-4=-4+2x+18 | | b+(b+45)+90+(2b-90)+1.5=540 | | 9,500+30=500x | | -2(16n-3)-8=82= | | 21+4y=27 | | −51=−3+8c | | 10+8a=100 | | 1x+-46x=-45x | | x-9+5x-33=24 | | Y=1000*1.01^x | | 3x+4=5x+6x= | | |x-5|-1=0 | | -8x−9=-6x+5 | | −51=−3+8c | | 5x=-4+4x | | 15=(3q-10)-5q | | (t)=3 | | 24+x-11=5x-39 | | -2(2w+7)=42 | | 2^4x=8^(x-4) | | 8y=312 | | -3(2v+8)=60 | | √4+x=9 | | 4.2x-5-6.5x=0 | | 6x-7(1-x)-10-4=0 | | -19=a-13 | | -3(3u-6)=18 | | (4x/2-2x/4)2+9x=-9 |